Strong Morita equivalence of operator spaces
نویسندگان
چکیده
منابع مشابه
Strong Morita Equivalence of Inverse Semigroups
We introduce strong Morita equivalence for inverse semigroups. This notion encompasses Mark Lawson’s concept of enlargement. Strongly Morita equivalent inverse semigroups have Morita equivalent universal groupoids in the sense of Paterson and hence strongly Morita equivalent universal and reduced C∗-algebras. As a consequence we obtain a new proof of a result of Khoshkam and Skandalis showing t...
متن کاملStrong Morita Equivalence of Higher-dimensional Noncommutative Tori. Ii
We show that two C∗-algebraic noncommutative tori are strongly Morita equivalent if and only if they have isomorphic ordered K0-groups and centers, extending N. C. Phillips’s result in the case that the algebras are simple. This is also generalized to the twisted group C∗-algebras of arbitrary finitely generated abelian groups.
متن کاملA Morita Type Equivalence for Dual Operator Algebras
We generalize the main theorem of Rieffel for Morita equivalence of W -algebras to the case of unital dual operator algebras: two unital dual operator algebras A,B have completely isometric normal representations α, β such that α(A) = [Mβ(B)M] ∗ and β(B) = [Mα(A)M] ∗ for a ternary ring of operators M (i.e. a linear space M such that MMM ⊂ M) if and only if there exists an equivalence functor F ...
متن کاملStrong Morita Equivalence of Higher-dimensional Noncommutative Tori
Let n ≥ 2 and Tn be the space of n × n real skew-symmetric matrices. For each θ ∈ Tn the corresponding n-dimensional noncommutative torus Aθ is defined as the universal C-algebra generated by unitaries U1, · · · , Un satisfying the relation UkUj = e(θkj)UjUk, where e(t) = e. Noncommutative tori are one of the canonical examples in noncommutative differential geometry [12, 2]. One may also consi...
متن کاملStrong Morita equivalence for semigroups with local units
Morita equivalence is a widely used tool for rings with identity. (Two rings are said to be Morita equivalent if the categories of unitary modules over them are equivalent.) For monoids, this notion is not really useful: in most cases it reduces to isomorphism. As the theory of Morita equivalence could be developed for the more general case of rings with local units, and then for idempotent rin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2017
ISSN: 0022-247X
DOI: 10.1016/j.jmaa.2016.09.042